Recent DIS Results from Jefferson Lab:

 A_1^n at High x and the Q^2 -dependence of g_2^n PANIC '05

Todd Averett
College of William and Mary
Williamsburg, VA USA

Polarized Inclusive Electron Scattering

- Scatter longitudinally polarized electrons from polarized nuclei (fixed target).
- Virtual photon probe of quark structure.
- At large Q², interaction dominated by scattering by single, asymptoticallyfree quark.

$$Q^{2} = \vec{q} \cdot \vec{q} - v^{2} - \text{(four - momentum transfer squared)}$$

$$x = \frac{Q^{2}}{2Mv} \text{(fractional momentum of struck quark)}$$

Formalism

- Inclusive polarized electron scattering from a ³He target polarized longitudinal or transverse to electron helicity.
- Polarized ³He --> polarized neutron target.
- ³He ground state:

 Measure polarized cross-section differences-extract structure functions/asymmetries.

$$\Delta \sigma_{\parallel}(v,Q^2), \ \Delta \sigma_{\perp}(v,Q^2) \ \Rightarrow \ g_1(x,Q^2), \ g_2(x,Q^2), \ A_1(x,Q^2), \ A_2(x,Q^2)$$

Physics of A₁, A₂, g₁, g₂

<u>Virtual photon asymmetries</u>

$$A_{1}(x,Q^{2}) \equiv \frac{\sigma_{1/2}^{T} - \sigma_{3/2}^{T}}{\sigma_{1/2}^{T} + \sigma_{3/2}^{T}}$$
 absorption of transversely polarized photons

$$A_2(x,Q^2) \equiv \frac{\sigma^{LT}}{\sigma_{1/2}^T + \sigma_{3/2}^T}$$
 longitudinal-transverse interference

Spin structure functions

$$g_1(x,Q^2) = \frac{1}{2} \sum_{i} e_i^2 \Delta q_i(x,Q^2)$$

 $g_1(x,Q^2) = \frac{1}{2} \sum_i e_i^2 \Delta q_i(x,Q^2)$ At large Q², related to polarized quark PDF's. Non-pQCD higher-twist contributions suppressed by factors of 1/Qⁿ.

$$g_2(x,Q^2)$$

Asymptotically-free AND higher-twist contributions enter at same order for any Q2.

Jefferson Lab HALL A

Oct. 27, 2005

PANIC '05

Todd Averett, College of William and Mary

Hall A polarized ³He target

- Both longitudinal and transverse polarization (and soon vertical)
- NEW hybrid K/Rb cells give faster spin-up time, higher polarization

Pumping Chamber

Transfer Tube
e' to IIRS

Target Chamber

incident e beam

Oct. 27, 2005

PANIC '05

A₁ in the valence quark region

- At high x_{Bj} and large Q^2 , valence quarks dominate nucleon structure.
- Simple SU(6) symmetric model predicts constant $A_1^n = 0$, $A_1^p = 5/9$.
- RCQM with hyperfine SU(6) symmetry breaking predicts $A_1^{n,p,d} \rightarrow 1$ as $x \rightarrow 1$.
- pQCD models assuming Hadron Helicity Conservation (HHC) also predict $A_1^{n,p,d} \rightarrow 1$ as $x \rightarrow 1$.
- Most models predict positive A_1 at high x and positive slope as $x \rightarrow 1$.
- Previously no precise data for A_1 at high x.
- Previous data for A_1^n at low-x slightly negative.

Jefferson Lab A₁ⁿ results

- Q²=2.7-4.8 GeV²
- Clear zero-crossing; positive slope.
- ★ Data don't agree with pQCD models assuming hadron helicity conservation with zero quark OAM (two upper curves).
- ★ Better agreement with models w/o HHC: RCQM (yellow band), NLO QCD fit constraint (red line), and statistical model (lower dashed curve).

Oct. 27, 2005 PANIC '05

X. Zheng et al., PRL **92**, 012004 (2004); PRC **70**, 065207 (2004)

Todd Averett, College of William and Mary

Extracting $\Delta u/u$ and $\Delta d/d$ from neutron results

- Assume s-quark contrib. small for x>0.3.
- Ignoring Q^2 -dep., use JLab g_1^n/F_1^n and world data for g_1^p/F_1^p .
- u-quark results agree with models.
- d-quark results agree with most models, but not with pQCD assuming HHC (blue dashed line).

The Future: A₁ⁿ at 11 GeV

- Anticipated upgrade of Jefferson Lab to 11 (12) GeV beam with new spectrometer.
- Definitive
 measurement of A₁ⁿ
 at high-x with
 polarized ³He.

Todd Averett, College of William and Mary

Q²-dependence of g₂ⁿ

- Precise measurement of g_2^n at $x \approx 0.2$ at five values of Q^2 between 0.57 1.34 GeV².
- Unlike g_1 , it has no simple parton model interpretation; contributions from quark-gluon correlations not suppressed relative to asymptotically-free contributions as in g_1 .
- Wandzura-Wilczek expression from OPE allows calculation of twist-2 contribution from "free-quark" scattering.

$$g_2^{WW}(x,Q^2) = -g_1(x,Q^2) + \int_x^1 \frac{g_1(x',Q^2)}{x'} dx'$$

 Deviation from g₂^{WW} quantifies higher-twist contributions.

Higher-Twist Contributions

twist-2 = scattering from
asymptotically-free quark

twist-3 = scattering
from quark that is
simultaneously exchanging
gluon with nucleon

Jefferson Lab results for g₂ⁿ

Evidence of HT effects.

Fit assuming twist-3 gives:

$$C_{tw-3} = 0.0262 \pm 0.0043 \text{ (stat.)}$$

 $\pm 0.0080 \text{ (sys.)} \pm 0.0099 \text{ (}g_2^{WW}\text{)}$

K. Kramer et al. PRL **95**, 142002 (2005)

g2n results con't

- Factor of > 10x improvement in g₂ⁿ statistical uncertainty.
- Measured g₁ⁿ consistent with NLO fits to world data, evolved to these Q²; indicates no HT effects within uncertainties.

Summary

- New precision data on neutron spin structure functions.
- Zero-crossing and positive slope seen in A₁ⁿ; data consistent with models allowing quark OAM.
- Evidence of HT effects clearly seen in g₂ⁿ.
- Precision data from JLab 12 GeV upgrade essential to pin down high-x region, test lattice and pQCD calculations of Q²-dependence of moments and structure functions.